
1

INTERNATIONAL ADVANCED LEVEL

INFORMATION
TECHNOLOGY
SCHEME OF WORK
Unit 2

Pearson Edexcel International Advanced Subsidiary in Information Technology (XIT11) Pearson Edexcel

International Advanced Level in Information Technology (YIT11)

First teaching September 2018

First examination from June 2019

First certification from August 2019 (International Advanced Subsidiary)

and August 2020 (International Advanced Level)

2

INTRODUCTION

The following scheme of work provides an overview of the content of the 2018 International Advanced Level Information Technology and

shows how the content could be taught as a guideline approach only.

It should be adapted by schools to f it their timetabling and staff ing arrangements. It is based upon a two-year delivery model where all IAS

content is being taught in the f irst year and the remaining IA2 content in the second year.

The scheme of work is broken up into units and topics, so that there is greater f lexibility for moving topics around to meet planning needs.

It includes:

● recommended teaching time for topics, though of course this is adaptable according to individual teaching needs

● classroom activities, teaching points and suggested teaching resources

● objectives for students at the end of the topic area and integrated Transferable Skills* that are being developed.

The number of guided learning hours for Advanced Level is 360. Teachers should be aware that the estimated teaching hours are approximate and

should be used as a guideline only.

3

Unit 2
(Refer also to the specification and the delivery and assessment guidance in the Getting Started Guide)

Topic 7: Understanding the functionality of HTML
Topic 7 deals with the understanding of HyperText Markup Language (HTML). It is expected that students will carry out
most of the styling within CSS. Audio and video content will use HTML only. Students may wish to specify the height and
width of images, emphasising or specifying the importance of text and the start and/or type of lists within HTML. Styling
will be intensively covered within the CSS content.
Week Topic area / aims /

learning outcomes

Exemplar classroom activities / teaching points / suggested teaching

resources

Integrated Transferable

Skills

1 7.1.1 Understand how

HTML is used to structure

web pages:

a. doctypes

b. elements

c. tags.

7.1.2 Understand how to

declare the language of

an html document.

7.1.3 Understand how

the head element is used

to supply information

about the document:

a. document title.

7.1.4 Be able to write

organised syntax:

a. lower case letters

within element

names, values and

attributes

b. indenting nested

elements

c. double quotes.

7.1.5 Understand how

global attributes are

used to define elements:

a. language.

Activity 1: Webpage structure

Tutors to discuss/demonstrate the basic structure of a webpage including:

• adding a doctype <!DOCTYPE html>

• specifying the character set <meta charset="UTF-8">

• adding elements (encompass opening tag, closing tag and content)

• adding tags (labels used to mark up the beginning and end of an

element)

• declaring the language of an html document <html lang="en">

• adding a document title <title>Example Title</title>

• writing organised syntax.

Tutors to provide a task that will enable the students to create the basic

structure of a web page.

Note: Students should include this basic structure in every web page they

create.

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

Activity 2: Headings and paragraphs, refreshing pages

Tutors to introduce and demonstrate:

• the use of headings and paragraphs <h1></h1><h2></h2> etc,

<p></p>

• refresh a page after a particular amount of time, e.g. <meta http-

equiv="refresh" content="30">

Tutors to provide a task that will enable students to:

https://qualifications.pearson.com/content/dam/pdf/International%20Advanced%20Level/IT/2018/Specification%20and%20Sample%20Assessment/International-AL-Information-Technology-Spec.pdf
https://qualifications.pearson.com/content/dam/pdf/International%20Advanced%20Level/IT/2018/TeachingandLearningMaterials/GETTING-STARTED-GUIDE.pdf

4

7.2.3 Be able to use

some key elements to

define the structure and

formatting of text on a

webpage:

a. headings

b. paragraphs.

7.2.4 Be able to create

lists:

a. unordered

b. ordered (and use

the start and type

attributes)

c. definition/

description

d. nesting lists.

• create a web page around a topic

• include the basic structure of a web page, headings and paragraphs.

Activity 3: Identifying HTML code errors

Tutors to provide tasks that will enable the students to:

• identify/explain/describe the basic structure of a web page

• identify/explain the code/errors in the code

• add to or amend code.

Activity 4: Lists

Tutors to discuss/demonstrate the difference between ordered, unordered,

nested and definition/description lists including:

• ordered lists

o

o

o using uppercase or lowercase letters in place of numbers

(type)

o specifying a start number/letter (start)

• unordered lists

o

o

• nesting lists

o ordered list within ordered list

o unordered list within unordered list

o unordered list within ordered list

o ordered list within unordered list

• definition/description lists

o <dl></dl> defines the description list

o <dt></dt> defines a data term

o <dd></dd> defines a data definition

• double quotes

o "

o "

Tutors to provide tasks that will enable the students to:

• create a web page or pages to incorporate the lists above

• identify/explain/discuss/describe the different types of lists

5

• identify/explain the code/errors in the code

• add to or amend code.

2 7.1.4 Be able to write

organised syntax:

a. removing the

forward slash at

the end of self-

closing elements.

7.2.5 Be able to create

links:

a. internal

b. external

c. email

d. opening links in a

new browser

window or tab

e. linking to a

specif ic part of the

same page

f. linking to a

specif ic part of

another page.

7.3.2 Be able to

represent information in a

table:

a. rows

b. data

c. headings, body

and footer

d. combining multiple

cells.

Activity 5: Links

Tutors to discuss/demonstrate links including:

• an external link that opens in the same browser window

• an external link that opens in a new browser window

• linking to a specif ic part of the same page

• linking to a specif ic part of another page

• email links.

Tutors to provide a two-page website that will enable students to:

• add the links above

• identify/explain/discuss/describe the different types of links

• identify/explain the code/errors in the code

• add to or amend code.

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

Activity 6: Tables

Tutors to demonstrate/discuss:

• <table></table> to define the table

• <tr></tr> to define rows

• <td></td> to define data

• <th></th> to define headings

• colspan/rowspan to combine multiple cells.

Tutors to provide tasks that will enable the students to:

• create a web page to present a table incorporating the above

• identify/explain the code/errors in the code

• add to or amend code.

Activity 7: Table grouping

Tutors to demonstrate/discuss:

• <thead></thead> used to group header content

• <tbody></tbody> used to specify body content

6

• <tfoot></tfoot> used to group footer content

• Browser can use the <thead><tbody> and <tfooter> to enable

scrolling of the table body independently of the header and footer.

Also allows the table header and footer to be printed at the top

and bottom of each page for tables spanning multiple pages.

Tutors to provide tasks that will enable the students to:

• create a web page to present a table using table grouping

incorporating the above

• identify/explain the code/errors in the code

• add to or amend code.

3 7.1.1 Understand how

HTML is used to structure

web pages:

a. attributes.

7.1.4 Be able to write

organised syntax:

a. double quotes

b. omit the values on

Boolean attributes.

7.3.1 Be able to add

images to web pages:

a. f ile format

b. image size

c. resolution

d. retaining original

proportions

f. alt tag.

7.3.5 Be able to prepare

audio and video:

a. multiple f ile

formats

b. embed in a web

page

c. controls

d. customising

controls

e. adding attributes

Activity 8: Adding images to web pages

Tutors to discuss/demonstrate images including:

• different f ile formats (GIF, JPG and PNG)

• specifying the size and height of an image (pixels, %)

• adding alt tags

• explain the purpose of image resolution within a web page (number

of pixels within an image) and how to maintain proportions when

scaling an image (e.g. specifying only one unit of length - either

width or height)

• removing slashes from self -closing elements (using slashes is also

acceptable).

Tutors to provide a task that will enable the students to:

• create a two-page website on a topic of the tutor’s choice that

includes:

o headings

o paragraphs

o an unordered list of images

▪ using different f ile formats

▪ with the heights and widths specif ied

▪ with alt tags

o an external link that opens in a new browser window

o a link to a specif ic part of another page

o an email link

• identify/explain the code/errors in the code

• add to or amend code.

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

7

f . using the source

element to specify

multiple resources.

7.3.6 Understand how to

use inline frames to add

dynamic content from

external websites.

Note: Images will be expanded upon in the topics for CSS and responsive

page design.

Activity 9: Preparing audio and video

Tutors should discuss/demonstrate:

o multiple f ile formats (wav, mpeg, mp3, mp4, webm, ogg,

possible browser playback issues)

o <audio></audio>

o <video></video>

o controls

o <source> (can include multiple sound f iles in different

formats to combat possible browser playback issues)

o type

o autoplay

o loop

For example:

<audio controls autoplay loop>

 <source src=“barkingDogs.mp3” type=“audio/mpeg”>

 <source src=“barkingDogs.wav type=“audio/wav”>

</audio>

<video controls width=“320” height=“240”>

 <source src=“barkingDogs/mp4”>

 <source src=“barkingDogs/ogg “>

</video>

Tutors to provide tasks that will enable the students to:

• embed audio (answers written on paper only)

o with controls

o without controls

o setting height and width

o specifying multiple f ile formats

o specifying multiple resources

o playing automatically

o looping

• embed video (answers on paper only)

o with controls

8

o without controls

o setting height and width

o specifying multiple f ile formats

o specifying multiple resources

o playing automatically

• identify/explain the code/errors in the code (answers written on paper

only)

• add to or amend code (answers written on paper only).

Activity 10: Inline frames

Tutors to discuss/demonstrate how inline frames can be used to add

dynamic content from external websites:

• <iframe></iframe>

• src

• width

• height

Tutors to provide a task that will enable the students to:

• create a web page incorporating the above

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://www.w3schools.com/tags/tag_iframe.asp

• https://www.w3schools.com/html/html_iframe.asp

4 7.2.1 Understand what is

meant by block-level

elements and inline

elements.

7.2.2 Understand that

elements can belong to

different content models

which follow certain rules:

a. f low

b. sectioning

c. heading

d. phrasing

Activity 11: Block-level elements, inline elements and content

models

Tutors to lead discussion or students to work in small groups to research

block-level elements, inline elements and content models:

• prior to modern HTML specif ication, HTML elements were either

block-level or inline elements

o block level elements

▪ take up the entire width of their parent

▪ always begin on a new line in the f low of the

document

o inline elements

• Co-operation

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://www.w3schools.com/tags/tag_iframe.asp
https://www.w3schools.com/html/html_iframe.asp

9

e. embedded

f. interactive.

7.2.3 Be able to use

some key elements to

define the structure and

formatting of text on a

webpage:

a. article

b. section

c. headings

d. paragraphs

e. thematic breaks

f. emphasis

g. importance.

11.1.1 Understand how to

add semantic markup to

web pages that describes

the content of a web page

and how this is used by

browsers and assistive

technologies.

11.1.2 Be able to use

elements that define what

the content is on the web

page:

a. headers and

footers

b. navigation

c. articles

d. asides

e. sections

f. main.

11.1.3 Understand that

you can still group

elements together even if

there is not a relevant

semantic tag:

a. div

▪ are on the same line (could have many inline

elements, one after another, and they will all still be

displayed on the same line

▪ restricted to only contain other inline elements

▪ take up only as much space as necessary

• modern content models

o a content model refers to the set of rules that define what

type of content each element can have

o they can still loosely be thought of as falling into either

block-level or inline elements

o f low content

▪ roughly translates into the block-level category.

▪ most elements used in the body of documents are

f low content (e.g. table, video, embed, article, etc.)

▪ elements can wrap (almost) all other elements

o sectioning content

▪ content that defines the scope of headings and

footers (e.g. article, nav, section, etc.)

o heading content

▪ defines the header of a section (e.g. h1, h2, etc.)

▪ they convey a meaning – the content they wrap is

to be treated as heading content

o phrasing content

▪ roughly translates into the traditional inline category

▪ defines the text and the markup it contains (e.g.

abbr, cite, em, etc.)

o embedded content

▪ imports another resource (e.g. audio, embed,

iframe, img, video, object, etc.)

10

b. span.

11.1.5 Be able to use

semantic markup to add

textual meaning:
a. importance

b. emphasis.

o interactive content

▪ elements that are specif ically designed for user

interaction (e.g. button, embed, iframe, select etc.).

Tutors to ensure tasks that will enable the students to:

• identify/explain/discuss/describe inline/block level elements

• identify/explain/discuss/describe content models.

Resources

• https://www.w3.org/TR/2011/WD-html5-20110525/content-

models.html

• https://clearlydecoded.com/html-content-models

• http://w3c.github.io/html-reference/common-models.html

Activity 12: The Semantic Web

Tutors to use a pre-created web page to discuss/demonstrate:

Semantic web

• gives content on the web page meaning and structure by using the

correct HTML element

• describes the content rather than how content should look

• enables computers, screen readers, search engines and other

devices to understand the content

• always uses semantic elements if they exist.

Elements

• <div> used for layout only – semantically meaningless

• <header></header>

• <footer></footer>

• <nav></nav>

• <article></article>

• <section></section>

• <hr> used to signify and thematic break in content

• emphasis <i></i>

o while both are typically (but not always) styled to display

as italic, is used when you want to put more stress

on a word or phrase rather than just display a word or

phrase using italics. is semantic mark up

• importance

https://www.w3.org/TR/2011/WD-html5-20110525/content-models.html
https://www.w3.org/TR/2011/WD-html5-20110525/content-models.html
https://clearlydecoded.com/html-content-models
http://w3c.github.io/html-reference/common-models.html

11

o both will embolden a word or phrase so they will look the

same in a browser; however, only is of use to a

screen reader. is semantic mark up.

• <aside></aside>

• <main></main>

Tutors to provide two pre-created webpages that will enable the students

to:

• identify/explain the code/errors in the code

• add to or amend the code.

Resources

• http://web-

accessibility.carnegiemuseums.org/foundations/semantic/

• https://www.w3schools.com/html/html5_semantic_elements.asp

http://web-accessibility.carnegiemuseums.org/foundations/semantic/
http://web-accessibility.carnegiemuseums.org/foundations/semantic/
https://www.w3schools.com/html/html5_semantic_elements.asp

12

Topic 8 Understanding the functionality of CSS

CSS documents contain styling rules that describe how HTML elements are displayed. Understanding CSS sizing, alignment,

spacing and responsiveness will allow you to control the layout of a web page and create consistent and visually appealing

web pages that can adapt to different device sizes.

Week Topic area / aims / learning

outcomes

Exemplar classroom activities / teaching points / suggested teaching

resources

Integrated Transferable Skills

5-6 7.1.3. Understand how

the head element is used

to supply information

about the document:

a. styles

b. links to external

f iles.

7.1.5 Understand how

global attributes are used

to define elements:

a. ID

b. style.

8.1.1 Understand the

purpose of CSS:

a. controlling page

layout

b. consistent page

design.

8.1.2 Be able to

reference CSS within the

HTML code:

a. inline styles

b. internal style

sheets

c. external style

sheets

(i) folder structure

(ii) naming

conventions

(iii) relative path.

8.1.3 Understand how to

write CSS rules:

Activity 13: CSS fundamentals

Tutors to discuss/demonstrate:

• the purpose of CSS

o controlling page design

o giving an entire website a consistent appearance

o improve navigation and readability of websites

• inheritance

o an element’s style values are copied from its parent

element

o it allows consistent styles throughout a website without

having to repeat code

• cascading

o children inherit from their parents unless they override the

parents’ style

o when multiple style sheets are used, they cascade

o general rule is that the last style sheet overrides the ones

specif ied before

o order depends on other factors such as weight, specif icity,

use of special keywords, and browsers

• how it is included within an HTML document

o <link rel=”stylesheet”> (external stylesheet)

o <style type=”text/css> (Internal in <head>)

o style=”color: red” (inline)

• external CSS folder structure and naming conventions

o styles folder

o relative paths (../style.css)

o absolute paths (C:/www/styles/style.css)

• what classes and IDs are used for, and why they are different

o IDs

▪ unique

▪ used to identify one element

▪ allow styling of one HTML element

▪ each element can have only one ID

▪ each page can have only one element with that ID

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

13

a. selectors

b. properties

c. values.

8.1.4 Understand CSS

selectors:

a. type

b. class

c. ID

d. universal

e. attribute

f. child

g. descendant

h. adjacent sibling

i. general sibling

j. multiple selectors.

8.1.5 Understand how to

write eff icient style sheets

through general rules that

apply to most elements

and applying specif ic

rules to individual

elements:

a. cascade

b. inheritance.

8.1.7 Be able to create

rules using CSS attribute

selectors that apply

elements that have an

attribute with a specif ic

value:

a. existence

b. equality

c. space

d. prefix

e. substring

f. suff ix.

8.2.4 Be able to style

elements:

a. text layout

o classes

▪ not unique

▪ used to identify more than one element

▪ allow styling for many HTML elements with the same

class

▪ can use the same class on multiple elements

▪ can use multiple classes on the same element

o you can use an ID and class on a single element

• CSS selectors

o properties of those selectors

o values of those properties

o types of selectors

▪ universal (*) – applies to all elements on the page

▪ element (e.g. div) – applies to specif ic elements

▪ class (.myclass) – applies to any html element with

that class

▪ ID (#myid) – applies to any html element with that

id

▪ attribute (e.g. input[type=”text”]) – targets

elements based on the presence or value of html

attributes

▪ pseudo class (e.g. a:hover) – targets an element in

a specif ic pseudo state, e.g. a link being hovered

▪ pseudo element (e.g. .title:before, #header:after) –

inserts and targets a pseudo element either before

or after an actual element. Can be used for e.g.

inserting an icon before a link, or the word “tel:”

before a telephone number.

▪ multiple selectors: (e.g. p, div, #header) – targets

every element in a comma separated list and

applies the same styles to all

• style elements

(Note: This may be done anywhere the tutors feel most

appropriate within the CSS/Design websites sections.)

o text layout (color, alignment, text-decoration)

o font (font-family, font-style, font-size (em, px, %, font-

weight)

o links (color, link, visited, hover, active, text-decoration,

background-color)

o lists (list-style-position, list-style-type:none)

o tables (border, border-collapse, height, width, text-align,

padding, background-color, nth-child(even), nth-

child(odd))

14

b. font

c. links

d. lists

e. tables

g. images.

o images (border-radius, border, padding, width, height,

opacity, visibility – also see positioning.

Tutors to provide a range of tasks that will enable the students to:

• describe the purpose of CSS

• explain cascading

• explain inheritance

• explain/describe/discuss the difference between external and

internal style sheets

• use external and internal style sheets

• name/identify/explain/describe/discuss and use these selectors:

o universal

o element

o class

o ID

o multiple selectors

• use these selectors:

o pseudo class

o pseudo state

o pseudo element

• style elements

o text layout

o font

o links

o lists

o tables

o images

• identify/explain errors in the code.

Resources

• https://css-tricks.com/the-difference-between-id-and-class/

• https://www.w3schools.com/cssref/css_selectors.asp

• https://www.w3schools.com/css/css_text.asp

• https://www.w3schools.com/css/css_font.asp

• https://www.w3schools.com/css/css_link.asp

• https://www.w3schools.com/css/css_list.asp

• https://www.w3schools.com/css/css_table.asp

• https://www.w3schools.com/css/css3_images.asp

https://css-tricks.com/the-difference-between-id-and-class/
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/css/css_text.asp
https://www.w3schools.com/css/css_font.asp
https://www.w3schools.com/css/css_link.asp
https://www.w3schools.com/css/css_list.asp
https://www.w3schools.com/css/css_table.asp
https://www.w3schools.com/css/css3_images.asp

15

Activity 14: Further CSS selectors

Tutors to discuss/demonstrate these selectors:

• descendant (eg #header .title) – applies to a more specif ic

selection, e.g., targets every element with the .title class within

the #header element. Does not have to be an immediate child of

#header

• child (eg #header > .title) – same as descendant but only targets

elements with the .title class that are a direct child of the #header

element

• general sibling (eg h2 ~ p) – targets every <p> which is a sibling

of a <h2>. Does not have to be an immediate sibling

• adjacent sibling (eg h2 + p) – same as general sibling but targets

only <p> elements that are adjacent siblings to <h2> elements.

Tutors to provide a range of tasks that will enable the students to

name/identify/explain/discuss/describe the selectors above.

Activity 15: Attribute selector syntax

Tutors to discuss/demonstrate:

• [attr] – selects element with specif ic attribute

• [attr=value] – selects element with specif ic attribute and specif ic

value for that attribute

• [attr~=value] – same as previous but can specify multiple,

whitespace-separated values to match against

• [attr|=value] – selects element with a specif ic value, or element

beginning with a specif ic value immediately followed by a hyphen

(often used for language subcode matches)

• [attr^=value] – selects element with a prefix of a specif ic value

• [attr$=value] – selects element with a suff ix of a specif ic value

• [attr*value] – selects element with at least one occurrence of

specif ic value.

Tutors to provide a range of tasks that will enable the students to:

• [attr] and [attr=value]

o use both

o describe how code examples work

o identify/explain the code/errors in the code

16

o add to or amend code

• the rest

o identify/explain them.

7-8 8.1.6 Understand the

CSS Box Model.

8.2.1 Be able to specify

colours:

a. colour names

b. hexadecimal

notation

c. RGB values.

8.2.2 Understand how to

manipulate colour:

a. opacity

b. gradients

c. HSL values.

8.2.5 Be able to use the

box model to add

backgrounds

(background images,

gradients, CSS sprites)

and borders to elements.

8.3.2 Be able to use the

box model to control the

appearance of boxes:

a. display

b. width

c. height

d. borders

e. margins and

padding.

8.2.3 Be able to specify

length values:

Activity 16: CSS box model

Tutors should discuss/demonstrate:

• the CSS box model

o every element of a web page is made up of a rectangular

box consisting of four layers – content, padding, border and

margin, in that order

o content box – the area in which content is displayed, e.g.

text or images. The CSS width and height properties set

the width and height of the content box

o padding – the inner margin of a CSS box, like the margin of

an A4 piece of paper

o border – the border between the padding and margin of a

content box. Has 0 width by default and is invisible, but can

be displayed with a variety of styles

o margin – the outermost part of a CSS box, surrounding the

border, padding and content box. The margin of one CSS

box touches against the margin of other CSS boxes, and

can be used to create space between them

• block level elements take up the entire width of their parent

• inline elements take up only as much space as necessary.

Tutors to provide a range of tasks that will enable the students to:

• describe the CSS box model

• use the CSS box model

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://developer.mozilla.org/en-

US/docs/Learn/CSS/Introduction_to_CSS/Box_model

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Box_model
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Box_model

17

a. absolute lengths

b. relative lengths.

Activity 17: Lengths and CSS units

Tutors to discuss/demonstrate:

• absolute lengths units are a f ixed length and will appear exactly at

the size specif ied. Length examples include px and pts

• relative lengths are a length relative to another length property

(generally font size), e.g. a div with a width of 10em will appear

10 times the size of the font size.

Tutors to provide a range of tasks that will enable the students to:

• name/identify/explain/discuss/describe the lengths above

• use the lengths above

• identify/explain the code/errors in the code

• add to or amend the code.

Activity 18: Colour and backgrounds

Tutors to discuss/demonstrate:

• colour names

o there are a number of colours specif ied by name in CSS,

e.g. red, black, etc.

• RGB

o red, green, blue values (e.g. rgb(255, 99, 70)

• HSL

o hue, saturation and lightness (e.g. hsl(0, 100%, 50%)

• hexadecimal

o hexadecimal value for colours (e.g. #24ba13)

• opacity

o cannot be used with Hex, can only be used with RGB or

HSL (e.g. opacity: 0.5)

• gradients

o transiting between two or more specif ied colours

• backgrounds can be transparent, an image or colour. For example:

o background-image: url(image.jpg)

o background-position:center

o background-color: #000000

o background-image: linear-gradient (top, red, black)

• image sprites may be used to decrease memory usage and the

number of http requests made by combining all images into one.

18

When an image sprite is set as a background, you are able target

the specif ic area of the combined image.

Tutors to provide a range of tasks that will enable the students to:

• name/identify/explain/discuss/describe/use the different ways of

specifying a colour

• use opacity

• use backgrounds

• identify/explain the code/errors in the code in terms of

o specifying a colour

o using opacity

o using backgrounds

• add to or amend code in terms of

o specifying a colour

o using opacity

o using backgrounds

• describe how images sprites can be used as a background.

9-10 7.3.1 Be able to add

images to web pages:

a. positioning

images.

8.3.1 Be able to control

the position of elements:

a. normal f low

b. relative positioning

c. absolute

positioning

d. f ixed positioning

e. f loating elements

f. overlapping

elements.

Activity 19: Positioning

Tutors to discuss/demonstrate:

• positioning of CSS boxes

o normal f low (position: static) - one CSS box follows another

o relative positioning (position: relative) – CSS box

positioned in relation to its default (static) positioning, e.g.

adding “top: 10px” to a relatively positioned element will

move it 10px down from its normal starting position

o absolute positioning (position: absolute) – CSS box

positioned exactly where specif ied. Unless otherwise

configured, will position elements in relation to the <html>

element, e.g. “top: 0px” will move it to the top of the

browser window, “bottom: 0px” will move it to the bottom.

If an absolutely positioned element is the descendant of a

box which has absolute or relative positioning itself, it will

be in relation to that box, rather than the <html> element

o f ixed positioning (position: f ixed) – is relative to the

viewport, or the browser window itself. The viewport does

not change when the page is scrolled, so a CSS box with

“top: 10px” will always appear 10 pixels from the top of the

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

19

browser, no matter where the user scrolls (it will appear to

“f loat” above the rest of the page)

o f loating elements (f loat: left) place an element on the left

or right side of its container, allowing text and inline

elements to wrap around it. The element is removed from

the normal f low of the page. Absolutely positioned

elements cannot be f loated

o images may be positioned using f loats

o overlapping elements – z-index applies to any element that

has a position other than static and controls the stacking of

elements. Elements with a higher z-index appear stacked

on top of an element with a lower z-index

o clearf ix to clear f loats

o img.hover, e.g. to change opacity.

Tutors to provide a range of tasks that will enable the students to:

• use the above

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://developer.mozilla.org/en-US/docs/Web/CSS/position

• https://developer.mozilla.org/en-US/docs/Web/CSS/z-index

• https://developer.mozilla.org/en-US/docs/Web/CSS/float

• https://www.w3schools.com/howto/howto_css_clearf ix.asp

11 8.4.1 Be able to use CSS

transitions and

transforms to create

animations:

a. transition

properties

b. transform

properties

c. 3D transforms

d. cubic-bezier.

Activity 20: Animations

Tutors to discuss/demonstrate:

• transition properties

o allows you to change property/properties values smoothly

(from one value to another) over a give duration

o need to specify CSS property to add effect to and the

duration of the effect

• transform

o applies a 2D or 3D transformation to an element

o allows you to rotate, scale, move, etc.

• transition and transform combined

o you can use a transition to add an effect to a transformation

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://developer.mozilla.org/en-US/docs/Web/CSS/position
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index
https://developer.mozilla.org/en-US/docs/Web/CSS/float
https://www.w3schools.com/howto/howto_css_clearfix.asp

20

• shapes with a transition effect applied to:

o width

o height

o width and height

o cubic-bezier – variable speed from start to end

• shapes with a rotate transform effect

• shape with a combined transition and 2D rotate transform effect.

Tutors to provide a range of tasks that will enable the students to:

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://www.w3schools.com/css/css3_transitions.asp

• https://www.w3schools.com/cssref/func_cubic-bezier.asp

• https://www.w3schools.com/css/tryit.asp?filename=trycss3_transiti

on_transform

• https://thoughtbot.com/blog/transitions-and-transforms

https://www.w3schools.com/css/css3_transitions.asp
https://www.w3schools.com/cssref/func_cubic-bezier.asp
https://www.w3schools.com/css/tryit.asp?filename=trycss3_transition_transform
https://www.w3schools.com/css/tryit.asp?filename=trycss3_transition_transform
https://thoughtbot.com/blog/transitions-and-transforms

21

Topic 10: Designing web pages
Adopting a design, implement, test and iterate approach to coding for the web enables web designers and developers to
build functional web pages for specific audiences and purposes. Effective page layout and design is essential to guiding
the user through a web product. Students will understand how to incorporate the principles of design, accessibility and
usability within their coding to be best placed to create visually appealing page layouts that enhance the user experience.

Topic 11: The semantic web
Semantic code describes the content rather than how the content should look. Semantic HTML adds functionality to web
pages, works better on mobile devices and supports search engine optimisation (SEO). Semantic markup also makes the
code easier to write and maintain, as it shows what each piece of content is about, as well as enabling students to take
advantage of default styles and functionality.
Week Topic area / aims / learning

outcomes

Exemplar classroom activities / teaching points / suggested teaching

resources

Integrated Transferable Skills

12-

13

8.3.3 Understand how to

design for differently

sized screens:

a. f ixed width layouts

b. liquid layouts

c. layout grids

d. CSS frameworks.

10.1.1 Understand how

to design web pages:

a. wireframes

b. mock-ups

c. web-design style

guide

d. prototyping.

10.1.3 Understand how

to use design principles to

create effective page

layout and design:

a. visual hierarchy

b. f low

c. colour theory

d. balance and

contrast.

Activity 21 : Different sized screens

Tutors to lead discussion or students to work in small groups to research

designing for different sized screens including:

• f ixed width layouts

o width of the entire page is set with a specif ic numerical value

o remain this width regardless of the size of the browser

window viewing the page

o allows the designer to build pages that will look identical no

matter who is looking at them

o can cause horizontal scrolling in smaller browser windows

o can result in a lot of unused space and more scrolling

vertically

• liquid layouts

o based on percentages of the current browser window’s size

o expands and contracts to f ill the available space

o do not allow for precise control over the width of the various

elements

• layout grids

o made up of rows and columns

o vertical line of grid items is a column

o horizontal line of grid items is a row

o spaces between each column/row are called gaps

o lines between rows are called row lines

• CSS frameworks

o software framework that is meant to make it easier to make

sure a web page/web site complies to standards using CSS

language

• Co-operation

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

22

o bootstrap is a widely used example.

Tutors to provide tasks that will enable the students to:

• name/identify/explain/describe the layouts and CSS framework.

Note: Students will create a f ixed layout web page in Activity 25.

Resources

• https://www.lifewire.com/fixed-width-vs-liquid-layouts-3468947

• https://www.sitepoint.com/resizing-f ixed-f luid-or-responsive-

layouts/

• https://visme.co/blog/layout-design/

• https://www.w3schools.com/css/css_grid.asp

• https://en.wikipedia.org/wiki/CSS_framework

Activity 22 : Designing web pages

Tutors to lead discussion or students to work in small groups to research

designing web pages including:

• wireframes

o sketch of a web page/web site before any design or

development takes place

• mock-ups

o look more like a f inished product or prototype but is not

interactive and not clickable; it is still a graphical

representation

• web-design style guide

o document that details the elements and patterns of a web

page/site, e.g. headers, links, buttons, etc.

• prototyping

o close to the f inished product

o processes can be simulated, and user interaction tested

o looks very similar to the f inished product.

Tutors to provide tasks that will enable the students to:

• name/identify/explain/discuss/describe/use a wireframe

• name/identify/explain/discuss/describe/use a mock-up

• name/identify/explain/discuss/describe/use a web-design guide

• name/identify/explain/discuss/describe/use prototyping.

https://www.lifewire.com/fixed-width-vs-liquid-layouts-3468947
https://www.sitepoint.com/resizing-fixed-fluid-or-responsive-layouts/
https://www.sitepoint.com/resizing-fixed-fluid-or-responsive-layouts/
https://visme.co/blog/layout-design/
https://www.w3schools.com/css/css_grid.asp

23

Note: Students will create a prototype of a web page using a wireframe and

web-design style guide in Activity 26.

Resources

• https://www.youtube.com/watch?v=T0vt3nLZKks

• https://uxplanet.org/basic-ui-ux-design-concept-difference-

between-wireframe-prototype-e38cd3580543

• https://premium.wpmudev.org/blog/web-design-style-guide/

• https://www.mockplus.com/blog/post/wireframe-mockup-prototype-

selection-of-prototyping-tools

Activity 23: Effective page layout and design

Tutors to lead discussion or students to work in small groups to research

designing web pages including:

• an effective web page/site design should meet its intended function

by getting across its message while engaging the user by

considering:

o visual hierarchy

▪ the order in which a user processes information of a

page

▪ taken into account so that users can understand

information easily

▪ F pattern is a reading pattern that roughly resembles

the letter F

• Users f irst read in a horizontal movement,

usually across the upper part of the content

area. This initial element forms the F's top bar.

• Next, users move down the page a bit and then

read across in a second horizontal movement

that typically covers a shorter area than the

previous movement. This additional element

forms the F's lower bar.

• Finally, users scan the content's left side in a

vertical movement. This last element forms the

F's stem.

o f low

▪ guiding the user through the page

o colour theory

https://www.youtube.com/watch?v=T0vt3nLZKks
https://uxplanet.org/basic-ui-ux-design-concept-difference-between-wireframe-prototype-e38cd3580543
https://uxplanet.org/basic-ui-ux-design-concept-difference-between-wireframe-prototype-e38cd3580543
https://premium.wpmudev.org/blog/web-design-style-guide/

24

▪ colour wheel – circle of colour hues showing

relationships between primary, secondary and tertiary

colours

▪ monochromatic – uses a single base colour and any

number of hues of this colour

▪ analogous – use any three colours that are side by

side on a 12-part colour wheel; usually one of the

three colours is predominant

▪ complementary – uses colours that are located

opposite each other on the colour wheel

▪ triadic – use three colours equally spaced around the

colour wheel

▪ compound – nearly the same as complementary

except it uses colour on both sides of the opposite

colour

o balance and contrast

▪ balance – the distribution of elements of the design

• symmetrical – mirrored balance of elements

across a centre line

• asymmetrical – no mirrored balance of

elements across a centre line

• radial – elements focussed around a central

point rather than line

▪ contrast

• can be through colours or use of shapes,

space, textures, etc. Elements that are the

opposite of each other.

Tutors to provide tasks that will enable the students to:

• name/identify/explain/discuss/describe

o visual hierarchy

o f low

o colour theory

o balance and contrast

• assess the effectives of a page layout and design

• analyse a page layout and design and provide recommendations.

Resources

• https://www.youtube.com/watch?v=7wvQd3-nDCs

• https://www.youtube.com/watch?v=oztFP1eBjY8

• https://www.interaction-design.org/literature/topics/visual-hierarchy

https://www.youtube.com/watch?v=oztFP1eBjY8
https://www.interaction-design.org/literature/topics/visual-hierarchy

25

• https://tomkenny.design/articles/the-principles-of-good-web-

design-part-1-layout/

• https://www.w3schools.com/colors/colors_monochromatic.asp

• https://www.w3schools.com/colors/colors_analogous.asp

• https://www.w3schools.com/colors/colors_complementary.asp

• https://www.w3schools.com/colors/colors_compound.asp

• https://www.smashingmagazine.com/2015/06/design-principles-

compositional-balance-symmetry-asymmetry/

• https://www.wix.com/blog/2018/07/7-principles-of-design-

websites/

14-

15

10.1.2 Be able to use web

typography:

a. web-safe fonts

b. embedding web

fonts.

11.1.5 Be able to use

semantic markup to add

textual meaning:

d. quotations

e. abbreviations and

acronyms

f. citations and

definitions

g. address

h. mark.

11.1.6 Be able to

semantically mark up

self-contained content:

a. f igure

b. caption.

Activity 24: Web typography

Tutors to discuss/demonstrate:

• web-safe fonts

o each device comes with its own pre-installed font selection

based largely on its operating system

o problem is systems can differ

o if this is not taken into account, then the font a user sees

when they view a web page may not be the font that was

intended

o web-safe fonts are fonts that will appear across all operating

systems

o designers should specify fonts to fall back to if the font they

use is not recognised by a particular operating system

o common web safe fonts include Arial, Helvetica, Times New

Roman, etc.

• embedding web fonts.

Tutors to provide tasks that will enable the students to:

• identify/explain/discuss/describe/use web-safe fonts

• describe how to embed web fonts.

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

Activity 25: Semantic mark up

Tutors to discuss/demonstrate:

• semantic markup that adds textual meaning

o quotations

▪ <blockquote></blockquote> long section that is

quoted from another source

https://tomkenny.design/articles/the-principles-of-good-web-design-part-1-layout/
https://tomkenny.design/articles/the-principles-of-good-web-design-part-1-layout/
https://www.w3schools.com/colors/colors_monochromatic.asp
https://www.w3schools.com/colors/colors_analogous.asp
https://www.w3schools.com/colors/colors_complementary.asp
https://www.w3schools.com/colors/colors_compound.asp
https://www.smashingmagazine.com/2015/06/design-principles-compositional-balance-symmetry-asymmetry/
https://www.smashingmagazine.com/2015/06/design-principles-compositional-balance-symmetry-asymmetry/
https://www.wix.com/blog/2018/07/7-principles-of-design-websites/
https://www.wix.com/blog/2018/07/7-principles-of-design-websites/

26

▪ <q></q> short quotation

o abbreviations and acronyms

▪ <abbr></abbr>

o citations and definitions

▪ <cite></cite>

▪ <dfn></dfn>

o address

▪ <address></address>

o mark

▪ <mark></mark>

• semantic markup for self -contained content

o f igure

▪ <figure></figure>

o caption

▪ <caption></caption>

Tutors to provide tasks that will enable the students to:

• use semantic markup

• identify/explain the code/errors in the code

• add to or amend the code.

Activity 26: Create web-page using a fixed layout

Tutors to provide a wireframe, style guide and assets for students to use in

order to create a f ixed layout web page. The sample and additional sample

material should be used as a general guide as to the type of information

they will need in order to complete the task.

16-

17

10.3.1 Be able to design

intuitive navigation

systems:

a. horizontal scroll

menu

b. vertical menu

c. dropdown menus

d. breadcrumb

navigation

e. button groups.

Activity 27: Intuitive navigation

Tutors to discuss/demonstrate:

• horizontal scroll menus

o menus that are placed across a screen

o the navigation is generally always visible although some of

the items may not be

o can be more natural to use on devices where you ‘swipe’

o can be good to use on responsive pages as may not require

any changes between desktop and mobile versions

o forces users to scan horizontally, which may not be a bad

thing as that is what people do when they read

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

27

o can be more visible than vertical menus

o can be easier to f ind that vertical menus

o may not be so good for those using a mouse

o some of the content may be missed as users don’t expect

further menu items to be there

• vertical menus

o menus that are placed down the screen either left or right

o can be faster and more eff icient for users to scan

o can be less visible than horizontal menus as sometimes there

are too many items to f it on the screen

o can be better than horizontal for those using a mouse

o may not be suitable for tablets or mobile phones, etc. as

those can take up too much space unless the designer

provides methods of hiding/viewing it

• dropdown menus

o list of items that appear when clicking a button, icon or text

selection

o good for grouping pages into categories

o good for showing a large list of choices without taking up

much space

o good for big sites with many sections as can improve

usability

o would only be on screen as and when needed

o can mean users skip top-level pages

o can be diff icult to scroll, e.g. with mouse

o users have to click to see what options are available

• breadcrumb navigation

o should use if there is a large amount of content in a strict

linear or hierarchical structure with definite categories

o should not be used for single-level websites that have no

logical hierarchy or grouping

o navigation that allows a user to see where the current page

is in relation to the web site’s hierarchy

o easily shows where a user can go on the site

o users may not use this design element, but they understand

what they are showing and can use them

• button groups

o series of buttons grouped together on a single line in a

button group.

Tutors to provide tasks that will enable the students to:

28

• identify/explain/discuss/describe the different types of navigation

systems

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code

• assess the suitability of navigation systems

• analyse navigation and make recommendations as to how it could

be improved.

Resources

• https://www.web-designlondon.co.uk/horizontal-scrolling/ (talks

about horizontal scrolling in general but still useful

• https://codepen.io/mahish/pen/RajmQw demonstration of a

horizontal scroll menu

• https://www.w3schools.com/howto/howto_css_menu_horizontal_scr

oll.asp demonstration of a horizontal scroll menu

• https://www.wix.com/blog/2015/07/vertical-navigation-menus-

should-you-use-them/

• http://www.grayboxpdx.com/blog/post/making-a-comeback-the-

vertical-menu

• https://designshack.net/articles/navigation/side-navigation-trend/

• https://www.w3schools.com/howto/howto_css_vertical_menu.asp

demonstration of a vertical menu

• https://baymard.com/blog/drop-down-usability

• https://uxplanet.org/breadcrumbs-for-web-sites-what-when-and-

how-9273dacf1960

18 8.3.4 Understand

responsive design

techniques.

Activity 28: Responsive design techniques

Tutors to discuss/demonstrate:

• a responsive web page is a page that adapts to any screen size so it

is as easy to use on a mobile as it is on a tablet or desktop

• the design instinctively adapts to the device it is being viewed on,

so it looks just as good on any device

• can use a f luid layout

• uses HTML and CSS to automatically resize, hide, shrink or enlarge

elements

• in terms of this unit creating a responsive web page, responsive will

include

o <meta name="viewport" content="width=device-width,

initial-scale=1.0"> needs to be added to the head element

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://www.web-designlondon.co.uk/horizontal-scrolling/
https://codepen.io/mahish/pen/RajmQw
https://www.w3schools.com/howto/howto_css_menu_horizontal_scroll.asp
https://www.w3schools.com/howto/howto_css_menu_horizontal_scroll.asp
https://www.wix.com/blog/2015/07/vertical-navigation-menus-should-you-use-them/
https://www.wix.com/blog/2015/07/vertical-navigation-menus-should-you-use-them/
http://www.grayboxpdx.com/blog/post/making-a-comeback-the-vertical-menu
http://www.grayboxpdx.com/blog/post/making-a-comeback-the-vertical-menu
https://www.w3schools.com/howto/howto_css_vertical_menu.asp
https://baymard.com/blog/drop-down-usability
https://uxplanet.org/breadcrumbs-for-web-sites-what-when-and-how-9273dacf1960
https://uxplanet.org/breadcrumbs-for-web-sites-what-when-and-how-9273dacf1960

29

o specifying the design for mobiles f irst in CSS

o adding a breakpoint for devices 600px or over (@media only

screen and (min-width: 600px)

o specifying the design for these larger devices in CSS.

Tutors to provide:

• a mock-up of a mobile web page

• a mock-up of how the page should look when the browser reaches

600px

• assets

• a style guide detailing the design below 600px and the differences

at 600px and over.

Resources

• a responsive layout template has been included

• https://www.youtube.com/watch?v=snQp757_Rr0

• https://www.w3schools.com/css/css_rwd_mediaqueries.asp

19 10.3.2 Understand how

to target specif ic devices

and browsers:

a. cross-browser

compatibility

b. functionality and

usability testing

c. code validation

d. browser

development tools.

Activity 29: Targeting specific devices and browsers

Tutors to discuss/demonstrate targeting specif ic devices and browsers:

• cross-browser compatibility

o is the manner in which your web page, web site or web

applications work properly across all browsers

o the aim is to provide all users with the same experience

across all browsers

• functionality and usability testing

o functionality testing

▪ assesses whether the web page, web site or web

applications works the way it should (behaves

according to the functional requirements) without

taking design principles into consideration

o usability testing

▪ focuses on how well the customer can use the web

page, web site or web app to complete the required

task

▪ tests overall structure, navigational f low, layout of

elements on a page, clarity of content and overall

behaviour

o code validation

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

30

▪ the process of checking that the coding of an HTML or

XHTML web page follows the standards and

recommendations set by the World Wide Web

Consortium (W3C) for the web

▪ can validate HTML, CSS and links

• HTML validators check that HTML coding

complies with the HTML standards set by the

W3C

• CSS validators check that CSS coding complies

with the CSS standards set by W3C

• link validators check that the hyperlinks work

correctly

o browser development tools

▪ most popular browsers have built-in tools to help web

developers and many additional plugins can be added.

Tutors to provide tasks that will enable the students to:

• explain/describe/discuss cross-browser compatibility

• explain/describe/discuss functionality and usability testing

• explain/describe/discuss code validation

• explain/describe/discuss browser development tools

• carry out functionality and usability testing

• use code validators

• use browser development tools.

Resources

• https://medium.com/@sarahelson81/what-is-cross-browser-

compatibility-and-why-we-need-it-b41423c3501a - what is cross

browser compatibility and similar concepts

• https://www.qualitestgroup.com/white-papers/functional-testing-vs-

usability-testing/ - difference between functional and usability

testing

• https://chatbotslife.com/9-ways-to-avoid-cross-browser-

compatibility-issues-ada192ef47bf - cross browser issues

• http://www.htmlbasictutors.ca/code-validation-clean-code.htm -

code validation

• http://validator.w3.org/ - HTML validator

• http://jigsaw.w3.org/css-validator/ - CSS validator

• http://validator.w3.org/checklink - link validator

• https://developer.mozilla.org/en-

US/docs/Learn/Common_questions/What_are_browser_developer_t

ools - what are browser development tools

https://medium.com/@sarahelson81/what-is-cross-browser-compatibility-and-why-we-need-it-b41423c3501a
https://medium.com/@sarahelson81/what-is-cross-browser-compatibility-and-why-we-need-it-b41423c3501a
https://www.qualitestgroup.com/white-papers/functional-testing-vs-usability-testing/
https://www.qualitestgroup.com/white-papers/functional-testing-vs-usability-testing/
https://chatbotslife.com/9-ways-to-avoid-cross-browser-compatibility-issues-ada192ef47bf
https://chatbotslife.com/9-ways-to-avoid-cross-browser-compatibility-issues-ada192ef47bf
http://www.htmlbasictutor.ca/code-validation-clean-code.htm
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://validator.w3.org/checklink
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools

31

• https://developers.google.com/web/tools/chrome-devtools/?hl=en –

Chrome developer tools

• https://getf irebug.com/ - Firebug developer tools

• https://developer.mozilla.org/en-US/docs/Tools - Firefox developer

tools

• https://developer.apple.com/safari/tools/ - Safari developer tools

• https://docs.microsoft.com/en-gb/microsoft-edge/devtools-guide -

Microsoft Edge developer tools

20 7.1.3 Understand how the

head element is used to

supply information about

the document:

a. metadata.

7.1.5 Understand how

global attributes are used

to define elements:

a. tabindex

b. data

c. hidden.

10.2.1 Understand how to

make websites accessible

to the widest possible

audience referring to the

Web Content Accessibility

Guidelines (WCAG).

11.1.4 Understand how

semantic code is used by

search engines (search

engine optimisation

(SEO)).

11.1.7 Know how Web

Accessibility Initiative –

Access Rich Internet

Applications (WAI-ARIA)

can be used to provide

additional semantics and

improve accessibility:

Activity 30: Accessibility

Tutors to demonstrate/discuss:

• Web accessibility is the inclusive practice of ensuring there are no

barriers that prevent interaction with, or access to, websites on the

World Wide Web by people with disabilities

• All users should have equal access to information and functionality

• Web accessibility aims to include

o visual impairments including blindness, various common

types of low vision and poor eyesight and various types of

colour blindness

o mobility issues, e.g. diff iculty or inability to use hands

o auditory (hearing) issues, e.g. deaf or hard of hearing

o seizures, e.g. people who suffer from epileptic seizures

caused by f lashing effects, etc.

o cognitive and intellectual issues, e.g. developmental or

learning diff iculties, etc.

• WCAG

o guidelines

▪ perceivable – information cannot be invisible to all of

user’s senses

▪ operable – interface cannot require interaction that a

user cannot perform

▪ understandable – content or operation cannot be

beyond their understanding

▪ robust – interpreted reliably by a wide variety of user

agents, including assistive technologies

• WAI-ARIA

o technical specif ication published by W3C that specif ies how to

increase the accessibility of web pages for assistive

technologies such as screen readers

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://developers.google.com/web/tools/chrome-devtools/?hl=en
https://getfirebug.com/
https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
https://docs.microsoft.com/en-gb/microsoft-edge/devtools-guide

32

a. functionality

through roles

b. states and

properties

c. live regions for

dynamic content

d. enhanced

keyboard

navigation.

o set of attributes for plugging the accessibility gaps in HTML5

semantics

o has no effect on how page elements are displayed or behave

in browsers

o only use where HTML5 semantics are not available or not

suff icient

o functionality through roles – enables the classif ication of

otherwise meaningless tags

o states and properties – information on how to interact with a

particular widget

o live regions for dynamic content – allow notif ications

whenever there are changes in that particular part of the

page

o enhanced keyboard navigation – allows every HTML element

to receive keyboard focus

o things to think about

▪ images

▪ audio and video

▪ colours

▪ text

▪ links

▪ forms

▪ navigation and site structure

(see checklist 1 below)

▪ page regions

▪ labelling regions

▪ headings

▪ content structure

(see checklist 2 below)

o tabindex, data, hidden

▪ tabindex – can be used to set the focus on elements in

a particular order when the user uses the tab key;

tabindex=0 is default order, -1 means no tab stop.

Only use them where absolutely necessary, e.g.

custom elements that would not ordinarily receive

focus from tab

▪ data – used to store custom data (data-*)

▪ hidden – Boolean attribute, when present specif ies

whether an element should be seen/heard; useful for

hiding elements that people with disabilities are not

required to see or hear, e.g. people with visual

impairments would not need to see asterisks for

compulsory f ields.

33

• SEO

o name given to activity that attempts to improve search

engine rankings

o should ensure a website can be found in search engine for

words and phrases relevant to what the site is offering

o some of most important techniques to use

▪ remove anything that slows down the site

▪ link to other websites with relevant content

▪ write for humans f irst, search engines second

▪ encourage other trustworthy sites to link to you

▪ use web analytics to see what is working and what is

not

▪ write unique and relevant meta descriptions for every

page

▪ use readable and meaningful URLs only

▪ use the right keywords in your images

• metadata

o data about the HTML document, e.g.

▪ meta name=”description” content=”Free CSS

Lessons”>

▪ meta name=”keywords” content=”HTML, CSS”>

Tutors to provide tasks that will enable the students to:

• explain/describe/discuss web accessibility

• explain/describe/discuss WCAG

• explain/describe/discuss HTML5 semantics

• explain/describe/discuss WAI-ARIA

• explain/describe/discuss SEO (including metadata)

• use metadata

• assess how well particular web pages incorporate accessibility

through the use of semantics, WCAG and WAI-ARIA

• analyse the use of semantics, WCAG and WAI-ARIA employed on

particular pages and make recommendations where appropriate

• assess how well particular web pages incorporate SEO techniques

• analyse the use of SEO techniques used on a particular web page

and recommend improvements.

Resources

• https://www.w3.org/TR/UNDERSTANDING-

WCAG20/intro.html#introduction-fourprincs-head

https://www.w3.org/TR/UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head
https://www.w3.org/TR/UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head

34

• http://www.disability.wa.gov.au/Global/Publications/Understanding

%20disability/Built%20environment/Accessible%20websites%20che

cklist.pdf – checklist 1

• https://www.w3.org/WAI/tutorsials/page-structure/ - checklist 2

• http://heydonworks.com/practical_aria_examples/ - examples of

ARIA in action

• https://developer.mozilla.org/en-

US/docs/Web/HTML/Global_attributes/tabindex - tab index

• https://www.w3schools.com/tags/att_global_data.asp - data

• https://www.w3schools.com/tags/att_hidden.asp - hidden

• https://www.youtube.com/watch?v=B4IqW-5a16o – SEO

• https://www.youtube.com/watch?v=sd0ypO9MTWY - SEO

http://www.disability.wa.gov.au/Global/Publications/Understanding%20disability/Built%20environment/Accessible%20websites%20checklist.pdf
http://www.disability.wa.gov.au/Global/Publications/Understanding%20disability/Built%20environment/Accessible%20websites%20checklist.pdf
http://www.disability.wa.gov.au/Global/Publications/Understanding%20disability/Built%20environment/Accessible%20websites%20checklist.pdf
https://www.w3.org/WAI/tutorials/page-structure/
http://heydonworks.com/practical_aria_examples/
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/tabindex
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/tabindex
https://www.w3schools.com/tags/att_global_data.asp
https://www.w3schools.com/tags/att_hidden.asp
https://www.youtube.com/watch?v=B4IqW-5a16o
https://www.youtube.com/watch?v=sd0ypO9MTWY

35

Topic 9: Understanding the functions of JavaScript
JavaScript is the programming language that, when applied to a HTML document, provides dynamic interactivity, such as
image sliders, galleries and fluctuating layouts. To make web pages interactive, the JavaScript selects elements on the
page. Students will select an element through the Document Object Model (DOM), and affect it to make it behave a
certain way when a user interacts with it. They will develop an understanding of fundamental programming concepts and
the syntax of the language to enable them to use JavaScript to create interactive web pages that respond to user actions.
Week Topic area / aims / learning

outcomes
Exemplar classroom activities / teaching points / suggested teaching

resources
Integrated Transferable Skills

21-

22

7.1.3. Understand how

the head element is used

to supply information

about the document:

a. scripts.

9.3.1 Understand how to

add JavaScript to web

pages.

9.3.2 Be able to program

functionality:

a. comments

b. assignment

c. selection

d. variables

e. subprograms.

9.3.5 Understand how to

use error handling and

debug JavaScript.

9.3.4 Understand how to

combine JavaScript with

HTML and CSS to create

page components:

a. pop-ups.

Activity 31: Programming functionality

Tutors to discuss/demonstrate:

• writing single line comments

• writing multi line comments

• using alerts to display as pop ups

• declaring variables and constants

• assigning values to variables and constants

• carrying out calculations

o addition

o subtraction

o division

o multiplication

o use BODMAS/BIDMAS effectively

• using selection including

o IF…THEN

o IF…THEN…ELSE

o IF…THEN…ELSEIF

o IF…THEN…ELSEIF…ELSE

o SWITCH

• using comparison operators including

o == equal to

o === equal value and equal type

o != not equal

o !== not equal value or not equal type

o > greater than

o < less than

o >= greater than or equal to

o <= less than or equal to

o IsNaN is not a number

• Using logical operators including

o && and

o || or

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

36

o ! not

• Using string methods

o length

o substring

o substr

o replace

o toUpperCase

o toLowerCase

o split

o charAt

• subprograms

o function declarations

o calling functions

o passing parameters

o executing functions

o returning values (when required).

Tutors may use ‘prompt’ and ‘alert’ pop up boxes for input at this stage.

Form input and similar concepts are covered in later weeks.

Tutors should explain the purpose of try, catch, throw and f inally in error

handling though it does not need to be coded.

There is no preference as to whether students terminate lines using semi-

colons.

Tutors to provide tasks that will enable the students to:

• create code to cover all the above

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://www.w3schools.com/js/js_string_methods.asp

• https://www.w3schools.com/jsref/jsref_try_catch.asp

23 9.3.2 Be able to program

functionality:

a. repetition

b. iteration.

Activity 32: Repetition and iteration

Tutors to explain that:

• repetition is an instruction or instructions that need(s) repeating

• iteration is the carrying out of this/these instruction(s).

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

https://www.w3schools.com/js/js_string_methods.asp
https://www.w3schools.com/jsref/jsref_try_catch.asp

37

Tutors to discuss/demonstrate:

• definite iteration

o loops where the exact number of iterations can be defined

o for loop

• indefinite iteration

o the exact number of iterations cannot be defined

o while loop

▪ condition will be tested at beginning of loop

▪ code within loop may or may not be executed

o do…while loop

▪ condition will be tested at end of loop

▪ code within loop will be executed at least once

o increment

o decrement.

Tutors to provide tasks that will enable the students to:

• create code to cover all the above

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

situations/contexts

24 9.3.2 Be able to program

functionality:

a. 1D and 2D data

structures.

Activity 33 : Arrays

Tutors to explain the difference between 1D and 2D arrays:

• 1D array can be thought of as a single column, multiple row table

• 2D array can be thought of as a multiple column, multiple row

table

• both are used to store multiple values in a single variable.

Tutors to discuss/demonstrate 1D arrays including:

• declaring and initialising an empty array

o var names = []

• declaring an array and initialising it with values, e.g.

o var names = [“Simon”,“Steve”,“Mobin”]

o var ages = [12,16,19,21,45]

• adding values to an array, e.g.

o ages[1] = 12

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

38

o names[2]= “Julie”

o age.push(10)

• sorting an array alphabetically

o names.sort()

• setting the length of an array, e.g.

o age.length=10

• f inding the length of an array using array.length

• looping through arrays, e.g. loop to f ind a value within the array.

Tutors to provide tasks that will enable the students to:

• create code to cover all the above

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://www.quora.com/What-is-the-difference-between-one-

dimensional-area-and-a-multidimensional-array

• https://www.w3schools.com/js/js_arrays.asp

25-

26

7.3.3 Be able to create a

form on a web page:

a. form structure

b. form elements

c. form controls

d. form buttons

e. organising and

grouping for

elements

f. input types

g. text areas

h. drop-down lists.

7.3.4 Understand how web

forms work:

a. how information is

sent from the

browser to the

server

b. form validation.

Activity 34: DOM

Tutors to lead discussion or students to work in small groups to research the

HTML Document Object Model (DOM) and how JavaScript works with it

including:

• the HTML DOM is an Object Model for HTML and a programming

interface for JavaScript

• the HTML DOM defines

o HTML elements as objects

o properties of all HTML elements

o methods to access all HTML elements

o events for all HTML elements

• JavaScript can

o add/change/remove HTML elements

o add/change/remove HTML attributes

o add/change/remove CSS styles

o react to HTML events

o add/change/remove HTML events.

• Co-operation

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://www.quora.com/What-is-the-difference-between-one-dimensional-area-and-a-multidimensional-array
https://www.quora.com/What-is-the-difference-between-one-dimensional-area-and-a-multidimensional-array
https://www.w3schools.com/js/js_arrays.asp

39

8.2.4 Be able to styles to

elements:

a. forms.

9.1.1 Understand how

the Document Object

Model (DOM) allows

JavaScript to access and

update the contents of a

web page while it is in the

browser window.

9.2.1 Understand regular

expressions.

9.2.2 Understand regular

expressions used for

validation check. Search

for matching:

a. letters and

sequences of

upper/lower case

characters

b. numbers

c. punctuation and

other symbols.

9.2.3 Be able to interpret

and construct patterns

consisting of repeating

characters and digits.

9.3.3 Understand how

events can be used to

trigger a function:

a. form events.

Tutors to explain that the ‘document’ object represents the web page in

the browser and that to access any element in the HTML page you would

always start with accessing the document object.

Tutors to provide tasks that will enable the students to:

• name/identify/explain/discuss/describe the HTML DOM and how

JavaScript works with it.

Resources

• https://www.w3schools.com/whatis/whatis_htmldom.asp

• https://www.w3schools.com/js/js_htmldom.asp

Activity 35: Creating forms

Tutors to discuss/demonstrate forms including:

• <form></form> to define the form

• these form elements/attributes/types/properties

o <input>

▪ type

• button

• checkbox

• radio

• submit

• text (tutors could include number, tel,

password, etc. if they want to)

• url

o <select></select> (drop-down list)

▪ <option></option> (options that can be selected)

▪ selected

o <textarea></textarea> (multi-line input f ield)

▪ rows

▪ columns

o <label></label> (label for an <input> element)

o <fieldset></fieldset> (to group related elements in a form)

o <legend></legend> (caption for a <fieldset> element)

o placeholder (hint to describe what to enter)

o CSS styling (e.g. input f ield widths, padding, margins, box-

sizing, borders)

Tutors to provide tasks that will enable the students to:

https://www.w3schools.com/whatis/whatis_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp

40

• create code to cover all the above

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://www.w3schools.com/css/css_form.asp

• https://developer.mozilla.org/en-

US/docs/Learn/HTML/Forms/Styling_HTML_forms

Activity 36: Events and validation

Tutors to provide short introduction to events and their use in form

validation:

• event - action a browser or user does that can be detected

• event handler – attribute added to an HTML element used to

trigger functions in JavaScript code

• can be used to trigger validation checks (e.g. clicking submit

button).

Tutors to discuss/demonstrate validating forms using JavaScript including:

• presence checks (including making sure input is present, items

selected from drop down boxes, checkboxes, etc.)

• type checks (including isNaN())

• range checks (between min and max numeric values)

• length checks (input is a length).

Format checks to be covered in regular expressions.

Tutors to provide tasks that will enable the students to:

• create code to cover all the above

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Resources

• https://www.geeksforgeeks.org/form-validation-using-html-javascript/

https://www.w3schools.com/css/css_form.asp
https://www.geeksforgeeks.org/form-validation-using-html-javascript/

41

Activity 37: Regular expressions and validation

Tutors to explain that a regular expression is a sequence of characters

that define a search pattern. Input is then checked against this pattern to

determine whether it is valid.

Tutors to explain:

• [] f inds range of characters

• ^ look at the beginning of string

• | or - pattern can be one thing or another

• + at least one character

• * zero or more character

• ? zero or one character

• $ looks at end of string

• { } how many occurrences

• /s a whitespace.

Tutors to provide written tasks for students to define particular patterns.

Tutors to discuss/demonstrate declaring and defining regular expressions

in Javascript such as:

• var regExpExample =/^[A-Z]{7}[a-z]+$/

/ start of expression

^ match beginning of string

[A-Z] uppercase letters

{1} 7 characters only

[a-z] lowercase letters

+ at least one of

$ end of string

/ end of expression

This regular expression searches the beginning of the string to

make sure there are exactly seven uppercase letters and then

checks to make sure the rest of the string is made up of at least

one lowercase letter.

SUNSETTing – acceptable

sunsetTTing – not acceptable

SUNSET – not acceptable

42

SUNSETT3ng – not acceptable

• var regExpExample2 = /[0-9]{3}/

/start of expression

[0-9] digits 0 to 9

{3} 3 digits only

/end of expression

this regular expression searches for exactly three digits

054 – acceptable

2 – not acceptable

a23 – not acceptable

• var regExpExample3 = /[A-Z]{2}[0-9]{1}\s[0-9]{1}[A-

Z]{2}

/start of expression

[A-Z]{2} two uppercase letters

[0-9]{1} one digit

\s a space

[0-9]{1} one digit

[A-Z]{2} two uppercase letters

This regular expression searches for two uppercase letters,

followed by one digit, followed by a white space, followed by one

digit, followed by two uppercase letters.

BE1 1BB – acceptable

Bb1 1BB – not acceptable

0B1 2XY – not acceptable

Tutors to discuss/demonstrate testing input using .test. For example:

if (regExpExample.test(input)===false){

 alert("Must start with an uppercase letter then lowercase letters ")

}

Tutors to discuss/demonstrate testing whether a word can be found in a

string using .match. For example:

var str = "the cat and the dog"

43

 if (res = str.match(/the/g)){

 alert("a match was found")

 }else{

 alert("no match found")

 }

Tutors to provide tasks that will enable the students to:

• write a regular expression pattern

• interpret a regular expression pattern

• create code to cover all the above

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could also stress the importance of JavaScript validation by

demonstrating how a page with a form can be inspected in the browser

and HTML attributes overridden.

Resources

• https://regexr.com/

• https://www.w3schools.com/jsref/jsref_isnan.asp

Activity 38: Sending form information

Tutors to discuss the basic principles of how form information is sent from

the browser to the server.

• At some point forms will normally require interactivity with a

server; for example, adding records to a database.

• This interaction is called a request.

1. The request is sent from a user through a client device to

the server.

2. The server acknowledges the request and replies to the

client device with the results of the request.

3. The client device displays the results to the user.

Students to produce an annotated diagram of the process.

https://regexr.com/
https://www.w3schools.com/jsref/jsref_isnan.asp

44

27 9.3.3 Understand how

events can be used to

trigger a function:

a. User Interface (UI)

events

b. keyboard events

c. mouse events

d. focus and blur

events.

Activity 39: Events in more depth

Tutors to recap events and explain that the user interface can trigger

events including keyboard, mouse, focus and blur events.

Students could work in small groups to research these events or tutors

could provide worksheets for students to complete.

Keyboard events

• keydown – triggered when any key is pressed down, triggered f irst,

and always before the browser processes the key

• keypress – triggered when a key that produces a character value is

pressed down, triggered after keydown, and before the browser

processes the key

• keyup – triggered when any key is released, triggered last, and the

browser processes the key

Mouse events

• mousedown – triggered when a user presses a mouse button over

an element

• mouseup – triggered when a user releases a mouse button over an

element

• onclick – triggered when a user clicks a button

Focus and blur events

• focus – triggered when an element gets focus

• blur – triggered when an element loses focus

Other events

• load – triggered immediately after a page has been loaded

• change – triggered when a user changes the selected option of a

<select> element

Tutors to provide tasks that will enable the students to:

• create code to cover all the above (change will be covered in weeks

28 to 29)

• describe how code examples work

• identify/explain the code/errors in the code

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://developer.mozilla.org/en-US/docs/Web/Events/keypress
https://developer.mozilla.org/en-US/docs/Web/Events/keyup

45

• add to or amend code.

Resources

• https://www.mutuallyhuman.com/blog/2018/03/27/keydown-is-

the-only-keyboard-event-we-need/

• https://www.w3schools.com/js/js_events.asp

• https://www.w3schools.com/js/js_htmldom_events.asp

28-

29

9.3.4 Understand how to

combine JavaScript with

HTML and CSS to create

page components:

a. slideshow

b. modal boxes

c. modal images

d. f ilter list

e. sort list

f. pop-ups

g. tabbed content.

Activity 40: Slideshow

Tutors to discuss/demonstrate a slide show program that:

• includes multiple images

• includes a next and back button

• displays the f irst slide when the page loads

• moves to the next image when the next button is clicked

• moves to the previous image when the back button is clicked

• moves to the f irst image when the next button has been clicked

and the last image has been viewed

• moves to the last image when the back button has been clicked

and the f irst image has been viewed.

Tutors to provide tasks that will enable the students to:

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could use the code in the resources for these tasks.

Resources

• https://www.makeuseof.com/tag/how-to-build-javascript-slideshow/

• https://www.w3schools.com/w3css/w3css_slideshow.asp

• http://javascript-tutors.net/index.php/lesson-29-creating-slideshow-

in-javascript/

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

Activity 41: Modal boxes

Tutors to explain that modal disables the main window but keeps it visible

and that users must interact with the modal window before they can

return to the main window.

https://www.mutuallyhuman.com/blog/2018/03/27/keydown-is-the-only-keyboard-event-we-need/
https://www.mutuallyhuman.com/blog/2018/03/27/keydown-is-the-only-keyboard-event-we-need/
https://www.w3schools.com/js/js_events.asp
https://www.w3schools.com/js/js_htmldom_events.asp
https://www.makeuseof.com/tag/how-to-build-javascript-slideshow/
https://www.w3schools.com/w3css/w3css_slideshow.asp

46

Tutors to discuss/demonstrate modal boxes including:

• displaying the modal box

• closing the modal box

• textual content

• action button(s), e.g. yes, no

• drawing attention to the model by darkening the background of the

page.

Tutors to provide tasks that will enable the students to:

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could use the code in the resources for these tasks.

Resources

• https://www.w3schools.com/howto/howto_css_modals.asp

• https://sabe.io/tutorsials/how-to-create-modal-popup-box

Activity 42: Modal images

Tutors to discuss/demonstrate modal images including:

• displaying the modal image

• closing the modal image.

Tutors to provide tasks that will enable the students to:

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could use the code in the resources for these tasks.

Resources

• https://www.w3schools.com/howto/howto_css_modal_images.asp

• https://codepen.io/Muhnad/pen/dMbXNb

https://www.w3schools.com/howto/howto_css_modals.asp
https://sabe.io/tutorials/how-to-create-modal-popup-box
https://www.w3schools.com/howto/howto_css_modal_images.asp

47

Activity 43: Filter list

Tutors to discuss/demonstrate f ilter lists including:

• a f ilter list used to narrow down a list to a specif ic search item

• a search input f ield

• search items

• a method of f iltering the search items depending on the contents of

the search f ield.

Tutors to provide tasks that will enable the students to:

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could use the code in the resources for these tasks.

Resources

• https://www.w3schools.com/howto/howto_js_filter_lists.asp

• https://www.w3schools.com/howto/howto_js_filter_table.asp

Activity 44: Sort list

Tutors to discuss/demonstrate sort lists including:

• an unsorted list

• a button to trigger the process of sorting the list

• the sorted list to be displayed in place of the unsorted list.

Tutors to provide tasks that will enable the students to:

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could use the code in the resources for these tasks:

• sortingListExample.html

• https://www.w3schools.com/howto/howto_js_sort_list.asp

https://www.w3schools.com/howto/howto_js_filter_lists.asp
https://www.w3schools.com/howto/howto_js_filter_table.asp
https://www.w3schools.com/howto/howto_js_sort_list.asp

48

Activity 45: Tabbed content

Tutors to discuss/demonstrate tabbed content including:

• tabs

• different content depending on the tab selected.

Tutors to provide tasks that will enable the students to:

• describe how code examples work

• identify/explain the code/errors in the code

• add to or amend code.

Tutors could use the code in the resources for these tasks.

Resources

• https://www.w3schools.com/howto/howto_js_tabs.asp

• https://www.101computing.net/creating-tabs-in-html-css-js/

30 9.3.2 Be able to program

functionality:

a. object orientation.

Activity 46: Object orientation

Tutors to discuss/demonstrate basic object orientation including:

• JavaScript is an object-based language based on prototypes

• This allows you to create hierarchies of objects and to have

inheritance of properties

• user defined objects types

o can be used for complex kinds of variables

o can store multiple data items and functions

o allow you to group related data items into a single object

o allow you to create as many ‘instances’ of that particular

object type as you want to

o can be thought of as a ‘blueprint’ for objects

o the ‘blueprints’ can be expanded.

Tutors to provide tasks that will enable the students to:

• explain/describe/discuss JavaScript object orientation

• create an object type

• create objects of that type.

• Communication

• Adaptive learning

• Adapting prior knowledge,

skills and experience of IT

to deal with new

situations/contexts

https://www.w3schools.com/howto/howto_js_tabs.asp

49

Tutors could use the task provided (objectTutorResource.pdf and

ooExample.html).

Resources

• objectTutorResource.pdf

• ooExample.html

• https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

• https://www.tutorsialspoint.com/javascript/javascript_objects.htm

• https://www.w3schools.com/js/js_object_definition.asp

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://www.tutorsialspoint.com/javascript/javascript_objects.htm
https://www.w3schools.com/js/js_object_definition.asp

FOR INFORMATION ABOUT EDEXCEL, BTEC OR LCCI QUALIFICATIONS

VISIT QUALIFICATIONS.PEARSON.COM

EDEXCEL IS A REGISTERED TRADEMARK OF PEARSON EDUCATION LIMITED

PEARSON EDUCATION LIMITED. REGISTERED IN ENGLAND AND WALES NO. 872828

REGISTERED OFFICE: 80 STRAND, LONDON WC2R 0RL

VAT REG NO GB 278 537121

GETTY IMAGES: ALEX BELMONLINSKY

